ODBG Socket Server

REFERENCE MANUAL

Manual Version: 0.92

ODBC Socket Server Version: 0.92
Author: Team FXML

TABLE OF CONTENTS

TABLE OF CONTENTS . .. e 2
INTRODUCTION . . . e e e 3
FEATURES . .. 3
INSTALLATION . . e e 5
ODBC SOCKET SERVER CLIENT TOOLS e 8
CONFIGURING ODBC SOCKET SERVER 13
COMMUNICATION PROTOCOL e 15
DEVELOPMENT INFORMATION s 17
SECURITY . 19
ROADMAP AND CHANGELOG e 20
CREDITS . 21

Author: Team FXML, all information © 1999 Team FXML 2

INTRODUCTION

ODBC Socket Server is a Windows NT service that allows unprecedented ODBC
database access across a multitude of different platforms. While other commercial packages
normally cost in the thousands of dollars, ODBC Socket Server provides not only a rich
feature set, but also all underlying code free of charge. With its XML based communication
mechanism and open source heritage, ODBC Socket Server is the most customizable and
feature-rich database access mechanism on the market today.

Team FXML, the developers of ODBC Socket Server, have years of database and

XML experience. This product is yet another open source tool from the open source leader in
Windows/Linux toolkits.

FEATURES

ODBC Socket Server contains many features that appeal to software developers and
managers alike. These features are:

. Multithreaded, Windows NT service

. Empowers any TCP/IP client platform to execute any SQL command on any Windows
ODBC datasource or OLEDB provider

. Uses a well-documented XML communication protocol to provide an extensible
communication mechanism

. Fine grained security ensures only authorized clients can connect

. Highly configurable out of the box, infinitely configurable via source code
manipulation

. Easy to debug: events are written to the NT Event log with an adjustable amount of
detail

. Includes client libraries for any type of Windows, UNIX, or Linux system

. Completely free of charge with a very liberal license (Gnu Public License)

. Service and clients also run on Windows 98

Many people wonder why we are giving this product away for free. The reason is
because we believe data warehouse access is just as important to application development as
the development environment. One should not dictate the other and by preserving choice of
servers and clients, ODBC Socket Server will ensure you have an extensible and sensible data
access layer.

Author: Team FXML, all information © 1999 Team FXML 3

The following diagram illustrates the role of ODBC Socket Server in your enterprise:

TCP/TIP clients

ODRC Socket Server

ODBC/ADO

ODRC Data Scurce

Author: Team FXML, all information © 1999 Team FXML

INSTALLATION ON WINDOWS NT

Before you install ODBC Socket Server, be sure you have the following software:

. Windows NT Version 4 or higher

. ADO libraries installed (included with higher service packs or the latest version can be
downloaded from http://www.microsoft.com/data/)

ODBC Socket server is a simple Windows NT Service. To install it, perform the
following steps:

L. Unzip the ODBC Socket Server application into a directory on your server.

2. Run the following command via the run option on the Windows NT start menu (or
from a DOS box, whichever you prefer) <path to
ODBCSocketServer.exe>\ODBCSocketServer.exe /Service
For example, if you installed ODBC Socket server to c:\ODBC, you would run the
command ¢:\ODBC\ODBCSocketServer.exe /Service
If you get an error mentioning either a missing or ordinal problem with the ATL.dll
file then copy your existing atl.dll from your winnt\system32 directory to a back-up
location. Now copy the atl.dll version included in the ODBC Socket Server
distribution (in the base directory) into your winnt\system32 directory. Last, register
this dll via the command “regsvr32 c:\winnt\sytem32\atl.dl1” (assuming that is where
your atl.dll is located). You should now be able to register ODBCSocketServer.exe
via the “ODBCSocketServer.exe /Service” command with no problems.

Running this command registers ODBC Socket Server with Windows NT as a service

3. To enter information about ODBC Socket Server into the database for configuration,
open the Windows NT Explorer and navigate to the directory where you unzipped
ODBC Socket Server. In this path there is a file called “Registry.reg”. Double-click
on this file from NT explorer to enter the default configuration settings into your
registry. A precise description of these settings is provided later on in this
documentation.

4, Using the control panel, open up the services dialog. You should see the ODBC
Socket Server present in the list of services:

Service Status Startup
ODEC Socket Server S ETE] :_I

OnTime [OMTIME_LITIL] Started Automnatic Start I
Flug and Play Started Autornatic

Protected Storage Started Autamatic Stop I
Remate Access Autadial M anager [izabled

Remate Access Connection M anager Dizabled J &I
Remote Accessz Server Dizabled et
Femate Procedure Call [RPC] Locatar b anual —

Femate Procedure Call [RPC] Service Started Autornatic e
Server Started Automnatic 7| i

Hw' Profiles.
Startup Parameters:

I Help

it

Author: Team FXML, all information © 1999 Team FXML 5

S. To start ODBC Socket Server, simply press Start. If you would like ODBC Socket
Server to automatically start each time Windows NT starts, press the Startup button
and select the “Automatic” option.

6. Please skip to the “Testing Your Installation” section below to test your ODBC Socket
Server installation

INSTALLATION ON WINDOWS 98

Installing ODBC Socket Server on Windows 98 is much more condensed than
Windows NT. However, there are no ODBC Socket Server binaries for Windows 98
distributed with ODBC Socket Server. Therefore, you must rebuild ODBC Socket Server
from source (found in the server_source directory) to generate a Windows 98 binary.

Windows 98 binaries are not included in the base ODBC Socket Server because
Windows 98 is not the optimal operating environment for ODBC Socket Server. However if
Windows 98 is your only option, use the following steps to install ODBC Socket Server

L. Unzip ODBC Socket Server into a directory on your Windows 98 machine

2. In the server_source directory, open up the ODBCSocketServer.dsp file using
Microsoft Visual C++. Compile a new binary using the build conifguration “Win32
Release”.

3. Simply run the resulting ODBCSocketServer.exe binary from Windows Explorer by

double-clicking on it. To run the service each time the machine is started, place a
shortcut to ODBCSocketServer.exe in the Startup menu.

TESTING YOUR INSTALLATION

To test ODBC Socket Server, you must first create an ODBC System Data Source on
your Windows NT Machine or use an OLEDB provider. To create an ODBC System Data
Source, follow these steps:

On the Start menu, point to Settings, and then click Control Panel.
Double-click ODBC.

Click System DSN and then click Add.

Click the type of data source you would like to add; then click Finish.
Complete the steps in the Create a New Data Source to SQL Server Wizard.

NS

Once an ODBC data source has been created, you can now test a query. To test the query,
we will use the sample client application the came with ODBC Socket Server. To use the test
client application, perform the following steps:

1. Register the ODBC Socket Server Client COM DLL. To do this, run the following
command via the run option on the Windows NT start menu (or from a DOS box,
whichever you prefer) regsvr32.exe <path to
ODBCSocketServer.exe>\clients\COM\ODBCClient.dll
For example, if you installed ODBC Socket server to c:\ODBC, you would run the
command regsvr32.exe c:\ODBC\clients\COM\ODBCClient.dll
In case your path is not setup correctly, regsvr32.exe lies in your Windows system32
directory.

2. Start the COM sample application, SockTest.exe (in the same directory as

Author: Team FXML, all information © 1999 Team FXML 6

Rl

ODBCClient.dll).

Enter the IP address, a valid ODBC connection string, and some SQL to execute. In
the available text boxes. Examples of valid ODBC connection strings include
“DSN=Pubs;UID=smith;PWD=muffins;” provided you have created an ODBC data
source named Pubs on the ODBC Socket Server machine. Examples of valid SQL
include “SELECT * FROM authors”

Click on the ExecSQL button to execute this SQL.

The results of your query should now appear in the results pane. If you don’t see any
results or the application times out, check the NT event log on both the ODBC Socket
Server machine and the machine you are running this test application on. Be sure to
check the Application event log!

The error messages in this log should help you diagnose your problem. If you are still
having trouble, e-mail the authors at fxml@excite.com with details of your problems.

Author: Team FXML, all information © 1999 Team FXML 7

ODBC SOCKET SERVER CLIENT TOOLS

The purpose of this section is to provide the reader with an introduction to the array of

client tools provided with ODBC Socket Server. All client tools include well-documented
source and also include a small, simple application that demonstrates the client tool.

L.

ODBC Socket Server ships with three different client utilities:

A COM object and Visual Basic application that execute remote queries on a server
and display the results in a text box. The real meat of this client is the COM object,
which can be embedded in any Microsoft application to provide ODBC Socket Server
functionality. The COM object will execute SQL on an ODBC Socket Server and
return the XML result string.

A Perl module and cgi script that demonstrate how to build an Internet gateway to
ODBC Socket Server. Since these scripts were developed on Linux, they demonstrate
the multi-platform capabilities of ODBC Socket Server and should allow any perl
developer to easily embed Microsoft ODBC databases into their Linux or UNIX web
application. The main method of the perl module will execute a SQL statement on an
ODBC Socket Server and return the corresponding XML string.

A C++ class and corresponding test application that were developed on Linux (and
should work without any source changes on any UNIX distribution). The C++ class,
like the aforementioned perl client, demonstrates how to call a remote Microsoft
ODBC database from a UNIX platform and wraps this functionality with an easy to
use interface.

A PHP class and script demonstrating its use. This script uses the excellent PHP
socket functions to connect and query an ODBC Socket Server machine. This script
was developed and tested on Linux using PHP3, though it should work on other
platforms and PHP 4 without modification.

A Python class and script demonstrating its use. This class was generously developed
and contributed by Marc Risney (marc.risney @blazesoft.com) and Jochen Knuth
(J.Knuth@ipro.de). It uses Python socket classes to interface with ODBC Socket
Server.

COM INTERFACE

The COM interface consists of a COM object programmed in C++ (using ATL) and

uses the Winsock sockets interface.

object. Its startup screen is as follows:

Also included is a Visual Basic application that demonstrates how to use the COM

ODBC Server NamedIP Address: I
Part: |9523

ODEC Connection Sting: |
SOL To Execute: |

Fiesultz Pane ;I

L o

Author: Team FXML, all information © 1999 Team FXML 8

The actual COM interfaces exposes the following attributes:

Name Type Description

ConnectionString BSTR ODBC connection string to
use

DebugLevel short Level of debug information

to output to event log. The
following values are used:
1- report as much
information as possible (not
as verbose as it sounds)

2- report only socket errors
and fatal errors

(recommended)
3- report only fatal system
errors

HostName BSTR Hostname or IP address of
the ODBC Socket Server to
connect to

Port short Port to connect to. Default is
9628.

SocketTimeout short Timeout in seconds while

waiting for the server
response. Default is 30.

The only method exposed is:

Name Parameters Returns Notes
ExecSQL sSQL - SQL string XML result string Executes SQL on the
to execute (BSTR) server and returns
the XML result
string.

PERL INTERFACE

The Perl module for ODBC Socket Server is a simple module that uses perl sockets to
communicate with the ODBC Socket Server.

The module differs from the other provided clients in that it provides no attributes,
just one method described below:

Author: Team FXML, all information © 1999 Team FXML 9

Name Parameters Returns Notes

ExecSQL Server - the server to | XML result string Connects via sockets
connect to (IP to the server and
address or name) executes the SQL,
ConnectionString - returning the XML
the ODBC that is ready for
connection string to parsing.
use
SQL - the SQL
command to execute

A related tool you will want to use is the Perl:: XML parser, a Perl parser based on
James Clark’s EXPAT XML parser. A great description of this module is at
http://www.xml.com/xml/pub/98/09/xml-per]l.html

Team FXML followers will be familiar with EXPAT as parsing module shipped with
fXML. EXPAT is an excellent XML parser that has been perfectly merged into the perl
language.

As a sample Perl application, a quick CGI fronted to this module has been created.
This application can be run from a web browser by pointing the web browser to the supplied
index.cgi file on a web server (configured so that the server can run cgi scripts).

UNIX C++ CLASS INTERFACE

The UNIX C++ interface was designed to be a method and attribute-perfect port of the
Windows COM interface. If you are a developer who has a little cross-platform development
experience, it is interesting to contrast the socket methods of the COM interface and this
interface. In some areas they are very similar, in others they are quite different. Also, please
do not let the word “port” deceive you! This class was ground-up native Linux code,
developed under K-Develop (project file included), an incredible IDE that provides many
advanced features. K-Develop can be downloaded at http://www.kdevelop.org/

The C++ class has the following public attributes:

Name Type Description

nPort short Port to connect to. Default is
9628.

nSocketTimeout short Timeout in seconds while

waiting for the server
response. Default is 30.

sConnectionString std::string ODBC connection string to
use

sHostName std::string Hostname or IP address to
connect to

The C++ class has one public method:

Author: Team FXML, all information © 1999 Team FXML 10

Name Parameters Returns Notes
ExecSQL sSQL - SQL string XML result string Executes SQL on the
to execute server and returns

the XML result
string.

PHP INTERFACE

The PHP interface takes the form of a class. It (like the other clients) queries an
ODBC Socket Server and returns the XML string. The permier XML parser for PHP,
EXPAT, must be compiled into PHP though. To compile PHP with XML parser support you
must use the --with-xml option. Full documentation on using XML with PHP is available at
the PHP site, http://www.php.net/
The interface of the class is almost identical to the C++ class.

The PHP class has the following public attributes:

Name Type Description
nPort short Port to connect to. Default is
9628.
sConnectionString string ODBC connection string to
use
sHostName string Hostname or IP address to
connect to
The PHP class has one public method:
Name Parameters Returns Notes
ExecSQL sSQL - SQL string XML result string Executes SQL on the
to execute server and returns
the XML result
string.

PYTHON INTERFACE

The Python class was generously developed and contributed by Marc Risney
(marc.risney @blazesoft.com) and Jochen Knuth (J.Knuth@ipro.de). It uses Python socket
classes to interface with ODBC Socket Server. It has uses a constructor to set host and
connection string information

Author: Team FXML, all information © 1999 Team FXML 11

Name Parameters Returns Notes
ODBCSocketServer Server - the server to | ODBC Socket The constructor
(constructor) connect to (IP Server object intializes the server
address or name) and connection
ConnectionString - string.
the ODBC
connection string to
use
ExecSQL SQL - The SQL to The XML result Executes SQL on the
execute from the ODBC server and returns
Socket Server the result

Author: Team FXML, all information © 1999 Team FXML

12

CONFIGURING ODBC SOCKET SERVER

The purpose of this section is to give you an overview of the out-of-the-box
configuration options of ODBC Socket Server.

ODBC Socket Server uses the Windows NT registry to load its special settings.
Although it is possible to run ODBC Socket Server without the registry settings, this practice
is not advised as it will result in ODBC Socket Server emitting the maximum amount of
status information to the NT Event Log and clients being able to connect from any host.

The registry key “HKEY_Local_Machine\Software\ODBC Socket Server” contains all
ODBC Socket Server configuration options. In this key, the following string values are

resent:

Registry Value Description

DebugLevel The amount of event information that is reported to the NT Event
Log. The following values are used:
1- report as much information as possible (not as verbose as it
sounds)
2- report only socket errors and fatal errors (recommended)
3- report only fatal system errors
The default value is 1. The recommended value is 2.

IP.Allow A list of the allowed client IP Addresses. Format for IP.allow is as
follows: A semicolon-delimited list of IP Addresses with “*” used as
a wildcard. Default value is “*” (allow all clients to connect).
Example: 127.0.0.1;10.4.1.%;
- Allow all localhost connections
- Allow connections from any machine that has an IP address starting
with 10.4.1.

IP.Deny A list of client IP Addresses that are not allowed to connect. Format
for IP.deny is the same as IP.allow.
If IP.allow is “*”, then all clients are allowed except those specified
in IP.deny.
If IP.allow is a list of clients, then no clients are allowed except those
specified in IP.allow.
Example: IP.allow = 127.0.0.1; 10.4.1.*

IP.deny is empty

Machine 10.4.1.24 is allowed to connect. Machine 10.4.2.25 is NOT
allowed to connect.

MaxThreadCount Maximum number of threads (or socket connections) allowed active
at one time. Default number is 5.

SocketTimeout The time in seconds to wait for socket data to arrive after a socket
connection has been established. The default value is 15.

Author: Team FXML, all information © 1999 Team FXML 13

SQLTimeout The time to wait for SQL communication to occur in seconds before
timing out. The default value is 15.

Port The registry port that ODBC Socket Server listens for connections on.
The default port is 9628.

UseCDATA Integer value (O or 1). Specifies whether XML CDATA tags should
be used when sending data back from the server to the client. The
default value is false, 0.

UseMSDTD Integer value (0, 1, or 2). Specifies what data format is emitted from

ODBC Socket Server. For small amounts of data, use 0, ODBC
Socket Server’s native format. For faster results in a similar format,
use 2. For the fastest results, use the native Microsoft format, 1. The
recommended value for large data sets is 1. For small data sets, 0.
The PHP and Perl samples parse output using value 0. Default is 0.

Of note is that the information in the registry is re-read each time a socket connection is
established. Therefore changing this information does NOT force you to restart the ODBC

Socket Server.

Author: Team FXML, all information © 1999 Team FXML 14

COMMUNICATION PROTOCOL

ODBC Socket Server uses an XML-based TCP/IP stream socket protocol to
communicate between a client and server. The advantages to this protocol are that any client
can connect and interact with the TCP/IP server. Macintosh, Linux, BSD, VAX, if a client
supports TCP/IP, it can talk to ODBC Socket Server. Also, the plethora of XML parsers
available for all of these platforms means that parsing ODBC Socket Server data is very
straightforward.

The disadvantages to using XML are that communication is more verbose than it
would be if a straight binary stream was used, and the exchange of clear text data exposes a
potential security risk if communication is taking place via a foreign network.

Future releases of ODBC Socket Server may include encryption as a transport option.
Using encryption would address the security concern, however as will be discussed in the
security section, exchanging ANY unencrypted data through a foreign network is generally
discouraged.

The default ODBC Socket Server communication protocol is very straightforward.
The ODBC Socket Server client makes a request to the server, and the server responds to this
request and then terminates the connection once all data has been sent. The data that is sent
has the following format:

Client Request DTD:

<!IELEMENT request (connectionstring, sql)>
<!IELEMENT connectionstring (#PCDATA)>
<!IELEMENT sql #PCDATA | #CDATA)>

Example:

<?xml version="1.0"7>

<request>
<connectionstring>DSN=pubs;UID=jsmith;PWD=test;</connectionstring>
<sql>select * from party where id = 3</sql>

<[request>

The most important thing to note is that the sql element is denoted here as PCDATA.
However it does not have to be PCDATA, CDATA is also acceptable. This way, if you
wanted a query such as “SELECT * FROM party WHERE id > 5" you could send:
<sqI>SELECT * FROM party WHERE id > 5</sql>

or

<sql><![CDATA[SELECT * FROM party WHERE id > 5]|></sql>

and either would be accepted.

Server Response DTD:
<!ELEMENT result (error | row*)>
<!ATTLIST result

state (success | failure)
>

<IELEMENT row (column*)>

Author: Team FXML, all information © 1999 Team FXML 15

<IELEMENT column (#PCDATA | #CDATA)>
<IATTLIST name (#PCDATA)
>

<!ELEMENT error (#PCDATA)>

Example of successful query:

<?xml version="1,0"7>

<result state="success”>

<row>

<column name="client_name”>John Smith</column>
<column name="date_added”>1999-04-01 0:0:0</column>
<frow>

<row>

<column>Peter Ross</column>

<column>1994-12-14 15:45:35</column>

<frow>

</result>

Example of failed query:

<?xml version="1.0"7>

<result state="failure”>

<error>0ODBC reports data source name not found</error>
</result>

The example of the successful query is more interesting here. What is returned is an
XML representation of an array, with each row containing the data from the recordset row
that was returned, if any. The first set of column data returned has a name attribute, which
specifies the name of the column.

A note about data types. The following data types are supported by the Socket
Server: String, Number, Float/Real/Double etc, Date, Currency, Memo (long text), and Binary
(BLOB). Date data is returned in the format YYYY-MM-DD HH:MM:SS. For string and
memo data, by default the data is returned in valid PCDATA format. This constraint means
that if the string “5 > 4 > 3" is to be returned, it would be returned as “5 > 4 > 3".
However this behavior can be overridden and CDATA can be returned instead. This is done
via the registry setting UseCDATA. If UseCDATA is true, then in the above example the
string “<![CDATAIS > 4 > 3]]>” would be returned instead.

This simple means of communication is one of the aspects of ODBC Socket Server
that aspiring developers may want to customize. For instance, if you are dealing with large
amounts of data being transferred from one Windows platform to another, you may want to
implement a quick binary encoding routine to ensure that not an overwhelming amount of
data gets exchanged. Keep in mind that doing this encoding will probably rule out
connections from UNIX or Macintosh clients!

Astute readers will note that the data format described in this section is for the default
ODBC Socket Server DTD. If data is required to be returned using the Microsoft ADO
DTD, then the registry setting “UseMSDTD” can be set to 1. This DTD is not documented
in this document and Team FXML has no control over future changes to the DTD. Therefore

Author: Team FXML, all information © 1999 Team FXML 16

it is recommended that you use the ODBC Socket Server DTD unless you are exchanging
very large amounts of data (where the MS DTD may be more efficient) or you have legacy
applications expecting the MS DTD data format.

The other output format ODBC Socket Server provides is similar to the original
format with the difference that column titles appear for each row and NULL values are not
transmitted.

Author: Team FXML, all information © 1999 Team FXML

17

DEVELOPMENT INFORMATION

This section is meant to be a reference for developers who wish to examine or modify
the source code of this application so they can very quickly get up to speed with the specifics
of the ODBC Socket Server.

ODBC Socket Server was created using Microsoft Visual C++ 6. It was implemented
as an ATL service which uses the Winsock layer for communication. The Standard Template
Library is used for most all string manipulation, and MFC is not used. Because of these
design decisions, this service is very lightweight and fast.

ADO is used for database connections, and it is highly recommended that the latest
OLEDB provider is used for your datasource as tremendous speed gains have been made over
the past year with the newest releases of data providers.

The main application runs from the ODBCSocketServer.cpp file. Upon starting the
service, a thread is spawned that instantiates the sockets layer and then calls procedure
DoWinsock in file main-server.cpp. It is in this file that the majority of work is done.
Important procedures are ReadAndWriteToSocket (which is responsible for most socket
communication) and VariantToXML (which takes the variant recordset returned and converts
it to XML). Note that for the alternate data outputs, the methods MSDTDToOurDTD and
RecordsetToMSDTD are used instead of VariantToXML.

To avoid the requirement of installing Internet Explorer, Team FXML has used their
own parser, XML as the XML parsing component of this application. fXML is an open
source, multiplatform XML toolkit that has wrappers for common XML parsers as well as its
own internal parser. XML can be found on the Internet at :http://www.geocities.com/
ResearchTriangle/System/5640/

It is statically compiled into ODBC Socket Server and all XML source code used in
ODBC Socket Server is provided as part of the ODBC Socket Server project. No additional
code is necessary to get ODBC Socket Server to install.

Author: Team FXML, all information © 1999 Team FXML 18

SECURITY

Any TCP/IP application must enforce tight security and ODBC Socket Server is no
exception. Security in ODBC Socket Server is provided on several levels. Unauthorized
access to ODBC Socket Server is provided via the IP.allow and IP.deny registry entries.
Correctly configuring these entries can ensure that only valid hosts connect to ODBC Socket
Server.

If your data is being passed through potentially insecure networks, then it is
imperative that you use a combination of an Internet fire-wall and a Virtual Private Network
toolkit such as Free S/WAN (http://www.xs4all.nl/~freeswan/). No matter what data access
toolkit you use, any data passing over an insecure network must be encrypted to prevent
unwanted data access.

Author: Team FXML, all information © 1999 Team FXML

19

ROADMAP AND CHANGELOG

Future versions of the ODBC Socket Server will include the following features:
Built in encryption/encoding technology

Interfaces for ODBC and DBI

KDE compliant SQL query analyzer

Any other suggestions that we receive!

There is no timeframe for these features to be implemented.

Version 0.92 of ODBC Socket Server had the following changes:

New Python client

Windows 98 documentation included

Fixed small state/status problem in main service
Fixed registry file

Versmn 0.91 of ODBC Socket Server incurred the following changes:

Added correct version of ATL.dl to the base distribution

Added PHP client to the base distribution

Removed server code to adjust recordset cache that was not supported by all ADO
providers

Fixed threading bug in service

Fixed buffer overrun in event logging

Small stability enhancements to main service and XML parser

Added extra output format

Team FXML wishes you the best with ODBC Socket Server and we hope you find this
service as useful as we have. Thank you for downloading, and enjoy!

Author: Team FXML, all information © 1999 Team FXML

20

CREDITS

Team FXML wishes to thank the following people for helping to develop and improve
ODBC Socket Server:
The Python class was generously developed and contributed by Marc Risney
(marc.risney @blazesoft.com) and Jochen Knuth (J.Knuth@ipro.de).
Steve Philp (sphilp@advancepkg.com) for his helpful debugging of the main service.

Author: Team FXML, all information © 1999 Team FXML 21

